terça-feira, 7 de maio de 2013

TERCEIRA LEI DE NEWTON-1ºA

ALUNO DE 1ºA-VISUALIZEM A PÁGINA:file:///C:/Documents%20and%20Settings/Administrador/Desktop/Din%C3%A2mica.htm 

PARA LEITURA E ENTENDIMENTO DESSE CONTEÚDO:


3ª Lei de Newton - Princípio da Ação e Reação
Quando uma pessoa empurra um caixa com um força F, podemos dizer que esta é uma força de ação. mas conforme a 3ª lei de Newton, sempre que isso ocorre, há uma outra força com módulo e direção iguais, e sentido oposto a força de ação, esta é chamada força de reação.
Esta é o princípio da ação e reação, cujo enunciado é:
"As forças atuam sempre em pares, para toda força de ação, existe uma força de reação."



Força Peso
Quando falamos em movimento vertical, introduzimos um conceito de aceleração da gravidade, que sempre atua no sentido a aproximar os corpos em relação à superficie.
Relacionando com a 2ª Lei de Newton, se um corpo de massa m, sofre a aceleração da gravidade, quando aplicada a ele o principio fundamental da dinâmica poderemos dizer que:
A esta força, chamamos Força Peso, e podemos expressá-la como:
ou em módulo: 
O Peso de um corpo é a força com que a Terra o atrai, podendo ser váriável, quando a gravidade variar, ou seja, quando não estamos nas proximidades da Terra.
A massa de um corpo, por sua vez, é constante, ou seja, não varia.
Existe uma unidade muito utilizada pela indústria, principalmente quando tratamos de força peso, que é o kilograma-força, que por definição é:
1kgf é o peso de um corpo de massa 1kg submetido a aceleração da gravidade de 9,8m/s².
A sua relação com o newton é:
 




Saiba mais...
Quando falamos no peso de algum corpo, normalmente, lembramos do "peso" medido na balança.
Mas este é um termo fisicamente errado, pois o que estamos medindo na realidade, é a nossamassa
Além da Força Peso, existe outra que normalmente atua na direção vertical, chamada Força Normal.
Esta é exercida pela superfície sobre o corpo, podendo ser interpretada como a sua resistência em sofrer deformação devido ao peso do corpo. Esta força sempre atua no sentido perpendicular à superfície, diferentemente da Força Peso que atua sempre no sentido vertical.
Analisando um corpo que encontra-se sob uma superfície plana verificamos a atuação das duas forças.
Para que este corpo esteja em equilíbrio na direção vertical, ou seja, não se movimente ou não altere sua velocidade, é necessário que os módulos das forças Normal e Peso sejam iguais, assim, atuando em sentidos opostos elas se anularão.

Por exemplo:
Qual o peso de um corpo de massa igual a 10kg:
(a) Na superfície da Terra (g=9,8m/s²);
(b) Na supefície de Marte (g=3,724m/s²).




(a) 

(b) 



Força de Atrito
Até agora, para calcularmos a força, ou aceleração de um corpo, consideramos que as superfícies por onde este se deslocava, não exercia nenhuma força contra o movimento, ou seja, quando aplicada uma força, este se deslocaria sem parar.
Mas sabemos que este é um caso idealizado. Por mais lisa que uma superfície seja, ela nunca será totalmente livre de atrito.
Sempre que aplicarmos uma força a um corpo, sobre uma superfície, este acabará parando.
É isto que caracteriza a força de atrito:
  • Se opõe ao movimento;
  • Depende da natureza e da rugosidade da superfície (coeficiente de atrito);
  • É proporcional à força normal de cada corpo;
  • Transforma a energia cinética do corpo em outro tipo de energia que é liberada ao meio.
A força de atrito é calculada pela seguinte relação:
Onde:
μ: coeficiente de atrito (adimensional)
N: Força normal (N)

Atrito Estático e Dinâmico
Quando empurramos um carro, é fácil observar que até o carro entrar em movimento é necessário que se aplique uma força maior do que a força necessária quando o carro já está se movimentando.
Isto acontece pois existem dois tipo de atrito: o estático e o dinâmico.
 
Atrito Estático
É aquele que atua quando não há deslizamento dos corpos.
A força de atrito estático máxima é igual a força mínima necessária para iniciar o movimento de um corpo.
Quando um corpo não está em movimento a força da atrito deve ser maior que a força aplicada, neste caso, é usado no cálculo um coeficiente de atrito estático: .
Então:

Atrito Dinâmico
É aquele que atua quando há deslizamento dos corpos.
Quando a força de atrito estático for ultrapassada pela força aplicada ao corpo, este entrará em movimento, e passaremos a considerar sua força de atrito dinâmico.
A força de atrito dinâmico é sempre menor que a força aplicada, no seu cálculo é utilizado o coeficiente de atrito cinético:
Então:
 

Força Elástica
Imagine uma mola presa em uma das extremidades a um suporte, e em estado de repouso (sem ação de nenhuma força).
Quando aplicamos uma força F na outra extremidade, a mola tende a deformar (esticar ou comprimir, dependendo do sentido da força aplicada).
Ao estudar as deformações de molas e as forças aplicadas, Robert Hooke (1635-1703), verificou que a deformação da mola aumenta proporcionalmente à força. Daí estabeleceu-se a seguinte lei, chamada Lei de Hooke:
Onde:
F: intensidade da força aplicada (N);
k: constante elástica da mola (N/m);
x: deformação da mola (m).

A constante elástica da mola depende principalmente da natureza do material de fabricação da mola e de suas dimensões. Sua unidade mais usual é o N/m (newton por metro) mas também encontramos N/cm; kgf/m, etc.

Exemplo:
Um corpo de 10kg, em equilíbrio, está preso à extremidade de uma mola, cuja constante elástica é 150N/m. Considerando g=10m/s², qual será a deformação da mola?
Se o corpo está em equilíbrio, a soma das forças aplicadas a ela será nula, ou seja:
, pois as forças tem sentidos opostos.
 
TEXTO RETIRADO DO SITE:www.sofisica.com
IMPRIMAM,PARA ESTUDAR!
PROFESSORA:MARY NEVES.
08-05-2013.









Nenhum comentário:

Postar um comentário